WATO EX-65 Pro

Anesthesia Workstation

Physical Specifications

Dimensions and Weight

Height 1370 mm

Width 780 mm (not including breathing system)

945 mm (including breathing system)

Depth 690 mm Weight <145 kg

(without vaporizers and cylinders)

Top Shelf

Weight limit 30 kg Width 305 mm Length 545 mm

Work Surface

 $\begin{array}{ccc} \text{Height} & 850 \text{ mm} \\ \text{Area} & 1635 \text{ cm}^2 \end{array}$

Drawer (3Xdrawers, Internal Dimension)

Height 130 mm Width 415 mm Depth 320 mm

Bag Arm

Height 1150 mm Length 312 mm

Connection ISO 22mm OD, 15mm ID

Casters

Diameter 125 mm

Brakes Centre brake system with Lock / Unlock

icons

Ventilator Specifications

Modes of Ventilation

 $Manual/Spontaneous\ Ventilation/Bypass$

Volume Control Ventilation (VCV) with PLV function

Pressure Control Ventilation (PCV) with/without volume guarantee

(VG)

Synchronized Intermittent Mandatory Ventilation (SIMV-Volume Controlled and SIMV-Pressure Controlled) Pressure Support Ventilation (PS) with apnea backup

 $Synchronized\ Intermittent\ Mandatory\ Ventilation\ Volume\ Guarantee$

SIMV-VG)

Continuous Positive Airway Pressure/Pressure Support Ventilation

(CPAP/PS)

Compensation

Circuit gas leakage compensation and automatic compliance

compensation

Ventilation Parameters Range

Patient Size Adult, Pediatric, Infant

Tidal volume 20~1500 mL ((Volume Mode)

(increments of 1 mL)

5~1500 mL (Pressure Mode)

Pinsp $5\sim70~cmH_2O$ (increments of $1~cmH_2O$)

Plimit $10\sim100 \text{ cmH}_2\text{O}$ (increments of 1 cmH₂O)

 Δ Psupp 3~60 cmH₂O (increments of 1 cmH₂O)

0, 3~60 cmH₂O (CPAP/PS)

Rate 4~100 bpm (increments of 1 bpm) I:E 4:1 - 1:8 (increments of 0.5)
Inspiratory pause (Tip:Ti) OFF, 5% - 60% (increments of 1%)
Inspiratory time (Tinsp) 0.2 - 10.0 s (increments of 0.1 s)
Trigger window 5% - 90% (increments of 5%)

Flow trigger 0.2 \sim 15 L/min (increments of 0.1L/min) Pressure trigger $-20 \sim -1 \text{ cmH}_2\text{O}$ (increments of 1 cmH₂O) Expiration termination level 5% - 80% (increments of 1%) Minimum Rate 2 - 60 bpm (increments of 1 bpm) Tslope 0.0 - 2.0 s (increments of 0.1 s) Apnea l: E 4:1 \sim 1:8 (increments of 0.5)

 Δ Papnea 3 - 60 cmH₂O (increments of 1 cmH₂O)

Positive End Expiratory Pressure (PEEP)

Type Integrated, electronic controlled

Range OFF, $3\sim30$ cmH₂O (increments of 1 cm H₂O)

Ventilator Performance

Driving pressure 280 kPa to 600 kPa

Peak gas flow 120 L/min + Fresh Gas Flow

Monitoring Parameters

0 ~ 100 L/min Minute volume 0~3000 ml Tidal volume Inspired oxygen (FiO₂) 18% ~ 100% Peak airway pressure -20 ~ 120 cmH₂O Mean pressure -20 ~ 120 cmH₂O -20 ~ 120 cmH₂O Plateau pressure I:E 4:1 ~ 1:10 Rate 0~120 bpm PFFP 0 ~ 70 cmH₂O Resistance (R) $0 \sim 600 \text{ cmH}_2\text{O}/(\text{L/s})$ Compliance (C) 0 ~ 300 ml/cmH₂O

Control Accuracy

Rate

Volume delivery 20 mL to 60 mL: ±10 mL

60 mL to 210 mL: ±15 mL

210 mL to 1500 mL: ± 7% of the set value

Pinsp $\pm 2.5 \text{ cmH}_2\text{O or} \pm 7\% \text{ of the set value,}$

whichever is greater

Plimit $\pm 2.5 \text{ cmH}_2\text{O or} \pm 7\% \text{ of the set value,}$

whichever is greater

 $\Delta P supp \\ \qquad \pm 2.5 \ cm H_2 O \ or \pm 7\% \ of \ the \ set \ value,$

whichever is greater

 $\Delta Papnea \qquad \qquad \pm \ 2.5 \ cmH_2O \ or \pm \ 7\% \ of \ the \ set \ value,$

whichever is greater

PEEP OFF: \pm 3.0 cmH₂O

3 to 30 cmH₂O: \pm 2.0 cmH₂O, or \pm 8% of the

set value, whichever is greater

 \pm 1bpm or \pm 10% of the set value,

whichever is greater

I:E 2:1 to 1:4: \pm 10% of the set value

Other range: ± 25% of the set value

 $\begin{array}{lll} \text{Tip:Ti} & \pm 8\% \\ \text{Tinsp} & \pm 0.2s \\ \text{Trigger Window} & \pm 10\% \\ \text{Flow Trigger} & \pm 1\text{L/min} \end{array}$

Pressure Trigger ± 2cmH₂O Exp% ± 10%

Monitoring Accuracy

Volume monitoring 0 mL to 60 mL: \pm 10 mL

 $60 \text{ mL to } 210 \text{ mL:} \pm 15 \text{ mL}$

210 mL to 1500 mL: \pm 7% of the set value \pm 2.0 cmH₂O or \pm 4% of the reading

Pressure monitoring $\pm 2.0 \text{ cmH}_2\text{O} \text{ or } \pm 4\% \text{ of the reading,}$

whichever is greater

Rate \pm 1bpm or \pm 5% of the reading, whichever is

greater

I:E 2:1 to 1:4: \pm 10% of the reading

Other range: \pm 25% of the reading \pm 0.1L/min or \pm 8% of the reading,

whichever is greater

Trend Graph

Continuous trend information with time discrete events for the latest

48 hours

MV

Trend Table

 $Continuous\ trend\ information\ together\ with\ time\ discrete\ events\ for$

the latest 48 hours

Alarm Log Book

500 events storage, first in first out

Alarm setting

Tidal volume Low: 0 ~ 1595 ml

High: 5 ~ 1600 ml

Minute volume Low: 0 ~ 99 L/min

High: 0.2 ~ 100 L/min

Inspired oxygen Low: 18% ~ 98%

High: OFF, 20% ~ 100%

Apnea alarm VTe < 10ml measured in 20s

 $Paw < (PEEP + 3) \ cmH_2O \ in \ 20s$

Airway pressure low $0 \sim 98 \text{ cmH}_2\text{O}$ Airway pressure high $2 \sim 100 \text{ cmH}_2\text{O}$ Sustained airway pressure alarm: 15s

 $Subatmospheric\ pressure\ alarm:\ Paw < -10\ cmH_2O$

Alarm silence countdown timer: 120 to 0 seconds

Lung Recruitment Tool

Increasing PEEP progressively (with a maximum of 7 stages)

Ventilator Components

Flow Sensor

Type Variable orifice flow sensor
Location Inspiratory and expiratory port

Oxygen Sensor

Type Galvanic fuel cell FiO₂ displayed 18% to 100%

Accuracy \pm (volume fraction of 2.5 % +2.5 % gas level)

Response Time ≤20 seconds

Ventilator Screen

Display type Color active matrix TFT touch screen

Display size 15 in diagonal Pixel format 1024 x 768 Brightness Adjustable

Screen display configurable

Display parameters All setting and alarm parameters (including

Breath rate, I/E ratio, Tidal volume, Minute volume, PEEP, MEAN, PEAK, PLAT, and O₂ concentration, EtCO₂, N₂O, Aesthesia gas

concentration, BIS)

Display waveforms P-T, F-T, V-T, CO_2 , BIS, O_2 , Anesthetic gas, N_2O

Spirometry loops P-V, F-V and F-P Timer On screen timer

Communication Ports

One RS-232C connector and one DB9 connector

Ethernet (RJ-45)

USB VGA

Vaporizers

Vaporizer Mindray V60 Anesthetic Vaporizer or Penlon

Sigma Delta Anesthetic Vaporizer

Support agents Halothane, Enflurane, Isoflurane,

Sevoflurane

Position MAX.2

Mounting mode Selectatec®, with interlocking function

Plug-in®, with interlocking function

Modules

Anesthesia Gas (AG) Module

 $Monitor\ gases \qquad \qquad CO_2, N_2O, Halothane, Enflurane, Isoflurane,$

Sevoflurane, Desflurane, MAC, Paramagnetic O₂ (optional)

Warm-up time 45 s (ISO accuracy mode)

10min (full accuracy mode)

Sample rate Adu/Ped: 150, 180, 200 ml/min

Neo: 100, 110, 120 ml/min

Accuracy \pm 10 mL/min or \pm 10% of the set value,

whichever is greater

Range CO_2 : $0\% \sim 10\%$

Des: $0\% \sim 18 \%$ Sev: $0\% \sim 8\%$ Enf, Iso, Hal: $0\% \sim 5\%$ O_2/N_2O : $0\% \sim 100\%$

Carbon Dioxide (CO₂) Modules

Method Infrared absorption

Module type Mindray side-stream

Capnostat mainstream Oridion micro-stream

(optional)

Work mode Standby or measurement

Displayed numerics EtCO₂, FiCO₂
Waveform Capnography

Side-Stream Carbon Dioxide (CO₂) Module

Measurement range $0 \sim 99 \text{ mmHg}$

Accuracy $\pm 2 \text{ mmHg} (0 \sim 40 \text{ mmHg})$

 \pm 5% of the reading (41 ~ 76 mmHg) \pm 10% of the reading (77 ~ 99 mmHg)

Resolution 1 mmHg

Sampling rate Neonatal: 100 mL/min and 120 mL/min

optional

Adult/children: 120 mL/min and 150

mL/min optional

Sampling rate accuracy: \pm 15% of the set value or \pm 15 mL/min,

whichever is greater

Warming-up time < 1 min, enter the ISO accuracy mode

After 1 min, enters the full accuracy mode

Response time <4.5 s@100 mL/min

<4.5 s@120 mL/min

Measured by using neonatal watertrap and

2.5 m neonatal sampling line

<5.5 s@120 mL/min <5 s@150 mL/min

Measured by using adult watertrap and

2.5 m adult sampling line

Capnostat Mainstream CO₂ Module

Measurement range 0 ~ 150 mmHg

Accuracy $\pm 2 \text{ mmHg } (0 \sim 40 \text{ mmHg})$

 \pm 5% of the reading (41 \sim 70 mmHg) \pm 8% of the reading (71 \sim 100 mmHg) \pm 10% of the reading (101 \sim 150 mmHg)

Resolution 1 mmHg
Rise time <60 ms
Response time <2 s

Alarm limit EtCO₂ High: OFF, 2 ~ 150 mmHg

EtCO₂ Low: OFF, $0 \sim 148$ mmHg FiCO₂ High: OFF, $1 \sim 150$ mmHg

Micro-stream CO₂ Module

Measurement range 0 ~ 99 mmHg

Accuracy $0 \sim 38 \text{ mmHg: } \pm 2 \text{ mmHg}$

39 \sim 99 mmHg: \pm (5 % of the reading + 0.08 %

of (the reading minus 38 mmHg))

Sampling rate 50 ml/min

Sampling accuracy $-7.5 \text{ ml/min} \sim + 15 \text{ ml/min}$

Initialization time 30s
Response time 2.9s
Rising time < 190 ms
Delay time 2.7s

Alarm range $EtCO_2$ High: OFF, 2 ~ 99 mmHg

EtCO₂ Low: OFF, $0 \sim 97$ mmHg FiCO₂ High: OFF, $1 \sim 99$ mmHg

BIS Module

Measured parameters EEG
BIS/BIS L, BIS R 0 ~ 100

Sweep speed 6.25 mm/s, 12.5 mm/s, 25 mm/s or 50 mm/s

Input impedance > 50 Mohm

Noise (RTI) $< 0.3 \text{ uV } (0.25 \sim 50 \text{ Hz})$

Input signal range ± 1 mv EEG bandwidth 0.25 ~ 100 Hz Patient leakage current < 10 uA

Alarm limit BIS high: $2 \sim 100$

BIS low: 0 ~ 98

 ${\sf Calculated\ parameters} \quad {\sf SQI/SQI\ L,\ SQI\ R;\ EMG/EMG\ L,\ EMG\ R;\ SR/SR}$

L, SR R; SEF/SEF L, SEF R; TP/TP L, TP R; BC/BC L, BC R; sBIS L, sBIS R; sEMG L, sEMG R; ASYM

Impedance range 0 ~ 999 Kohm

Agent Consumption Calculation

Calculation range 0 to 3000 ml

Accuracy \pm 2 mL, or \pm 15% of the reading, whichever

is larger

Agent consumption speed

Anesthetic agents Desflurane, Enflurane, Isoflurane,

Sevoflurane and Halothane

Consumption speed Desflurane: $0 \sim 900 \text{ ml/h}$

Sevoflurane: 0 ~ 450 ml/h Enflurane, Isoflurane and Halothane: 0 ~ 250

ml/h

Accuracy $\pm 2ml/h$ or $\pm 15\%$ of the displayed value,

whichever is greater

Electrical Specifications

Current Leakage

 $100 \sim 240V$ < 500 μA

Power And Battery Backup

Power input 220-240 Vac, 50/60 Hz, 6A

100-120 Vac, 50/60 Hz, 7A 100-240 Vac, 50/60 Hz, 7A

Auxiliary electrical outlets

Up to 4 outlets (3A for each, total 5A)

Battery backup 150 minutes for 2 standard pieces of battery

(powered by new fully-charged batteries

with 25°C ambient temperature)

Battery type Build-in Li-ion battery, 11.1 VDC, 4500 mAh
Safety feature In case of electricity and battery failure,

manual ventilation, gas delivery and agent

delivery are possible

Pneumatic Specifications

ACGO (Auxiliary Common Gas Outlet, Integrated)

Connector ISO 22 mm OD and 15 mm ID

Pipeline Supply

 $\begin{array}{ll} \text{Gas type} & \text{O}_2, \, \text{N}_2 \text{O} \text{ and Air} \\ \text{Pipeline input range} & 280 \text{ to } 600 \text{ kPa} \\ \text{Pipeline connections} & \text{DISS or NIST} \\ \end{array}$

Pipeline Supply Pressure Gauges

Display type Electronical or Mechanical

Ranges 0 to 1000kPa

Accuracy \pm (4% of the full scale reading + 8% of the

actual reading)

Cylinder Supply

Cylinder Supply E Cylinder (American style or UK style)

 O2 Input Range
 6.9 to 20 MPa

 N2O Input Range
 4.2 to 6 MPa

 Air Input Range
 6.9 to 20 MPa

Cylinder Connections Pin-Index Safety System (PISS)

Yoke Configuration O₂, N₂O, Air

Cylinder Supply Pressure Gauges

Display type Electronical or Mechanical

 $\begin{array}{lll} \mbox{Air Range} & \mbox{O to 25 MPa} \\ \mbox{O}_2 \mbox{ Range} & \mbox{O to 25 MPa} \\ \mbox{N}_2 \mbox{O Range} & \mbox{O to 10 MPa} \\ \end{array}$

Accuracy \pm (4% of the full scale reading+8% of the

actual reading)

O₂ Controls

Method N_2O shut off with loss of O_2 pressure

Supply failure alarm \leq 220.6 kPa O_2 Flush $25 \sim 75$ L/min

Auxiliary O₂ Flowmeter

Range $0 \sim 15 \text{ L/min}$ Indicator Flow tube

Electronic Flow control system (Electronic Mixer)

Direct Flow Control Mode

 O_2 flow range 0 to 15 L/min Air flow range 0 to 15 L/min N_2O flow range 0 to 12 L/min

 O_2 flow accuracy \pm 50 ml/min or \pm 5% of setting value,

whichever is greater

Balance gas (Air/N₂O) flow accuracy

± 50 ml/min or ±5% of setting value,

whichever is greater

Total Flow Control Mode

Total flow range 0.2 to 18 L/min

Total flow accuracy ± 100 ml/min or $\pm 5\%$ of setting value,

whichever is greater

O₂ concentration

Range 21% to 100% (The balance gas is Air) or 26%

to 100% (The balance gas is N₂O)

Accuracy $\pm 5\%$ V/V for flows < 1 L/min or 5% setting

for flows ≥ 1 L/min

Environmental Specifications

Operating

Temperature $10 \sim 40^{\circ}$ C

Relative humidity 15% ~ 95% (noncondensing)

Barometric (Kpa) 70 ~ 106 kPa

Storage

Temperature $-20 \sim 60^{\circ}$ C for main unit,

-20 ~ 50°C for O₂ sensor

Relative humidity 10% ~ 95% (noncondensing)

Barometric $50 \sim 106 \text{ kPa}$

Electromagnetic Compatibility

Immunity Complies with all requirements of IEC

60601-1-2

Emissions Complies with all requirements of IEC

60601-1-2

Breathing System Specification

Breathing system volume (Pre-pak)

Automatic ventilation 2850 ml Manual ventilation 1800 ml

Breathing system volume (Non Pre-pak)

Automatic ventilation 2600 ml Manual ventilation 1800 ml

System Components

Carbon dioxide absorbent canister

Absorbent capacity: 1500 mL

Integrated expiratory limb water trap

Capacity: 6 mL

Breathing Circuit Parameters

Compliance ≤4 mL/100Pa (bag mode)

Automatically compensates for

 $compression\ losses\ within\ the\ breathing$

circuit in mechanical mode

Expiration resistance < 6.0 cm H₂O @60 L/min

Inspiration resistance < 6.0 cm H₂O @60 L/min

System Pressure Gauge

Range $-20 \sim 100 \text{ cmH}_2\text{O}$

Accuracy \pm (2% of the full scale reading + 4% of the

Ports and Connectors

Exhalation 22 mm OD / 15 mm ID conical Inhalation 22 mm OD /15 mm ID conical Manual bag port 22 mm OD /15 mm ID conical

Bag-to-Ventilator Switch

Type Bi-stable

Control Switch between manual and mechanical

actual reading)

ventilation

Integrated Adjustable Pressure Limiting (APL) Valve

Range SP, $5 \sim 75 \text{ cmH}_2\text{O}$ Tactile knob indication at above $30 \text{ cmH}_2\text{O}$

Accuracy $\pm 3 \text{ cmH}_2\text{O or} \pm 15\% \text{ of the setting value,}$

which is greater, but is not more than + 10

 cmH_2O

Anesthetic Gas Scavenging System (AGSS)

Size (H x W x D) 430 x 132 x 114 mm

Type of disposal system

Active: High-flow or Low-flow

Passive

Applicable standard ISO 80601-2-13

Pump rate $75 \sim 105 \text{ L/min (High-flow)}$

25 ~ 50 L/min (Low-flow)

Pressure relief device: Pressure compensation opening to the air State indication of the disposal system: The float falls below the "MIN" mark on the sight glass when the disposal system does not work or the pump rate is lower than 25 L/min (Low-flow) or 75 L/min

(high-flow).

Connector of the disposal system: ISO 9170-2

Materials

All materials in contact with exhaled patient gases are autoclavable, except flow sensors (being not capable of being autoclaved), O_2

sensor, and mechanical pressure gauge.

All materials in contact with patient gas are latex free.

Suction Device

Venturi Suction Regulator

Gas source Air, from system gas source

Minimum flow 20 L/min

Maximum vacuum ≥72 kPa at supply gas pressure of 280 kPa;

≥73 kPa at supply gas pressure of 600 kPa

Continuous Suction Regulator

Supply Negative Pressure Suction

Maximum vacuum 517.5 mmHg to 540 mmHg (69 kPa to 72

kPa) with external vacuum applied of 540

mmHg and 40 L/min free flow

Maximum flow 39 L/min to 40 L/min with external vacuum

applied of 540mmHg and 40 L/min free flow

Minimum flow 20 L/min

 $\label{thm:please contact your local Mindray sales representative for the most} Please contact your local Mindray sales representative for the most} \\$

current information.

mindray Healthcare with reach are registered trademarks or trademarks owned by Shenzhen Mindray Bio-medical Electronics Co., LTD

Mindray Building, Keji 12th Road South,

High-tech Industrial Park, Nanshan, Shenzhen 518057, P.R. China

Tel: +86 755 8188 8998 Fax: +86 755 26582680 E-mail: intl-market@mindray.com www.mindray.com © 2017 Shenzhen Mindray Bio-medical Electronics Co., Ltd. All rights reserved. Specifications subject to changes without prior notice.

P/N: ENG-WATO EX-65 Pro datasheet-210285X4P-20180122

